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Abstract

The design, alignment, calibration, and field deployment of a solid-state lightning detector is

described. The primary sensing component of the detector is a potassium dihydrogen phosphate

(KDP) electro-optic crystal that is attached in series to a fiat plate aluminum antenna; the

antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (2 =

685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration.

Lightning-caused electric field changes are related to small changes in the transmission of laser

light through the optical cell. Several hundred lightning electric field change excursions were

recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall

Space Flight Center (MSFC) in northern Alabama.



1. Introduction

The most common means for measuring lightning-caused changes in thunderstorm electric

fields involves the application of a flat metal plate antenna and a charge integrating apparatus.

Because the normal field E,, at the surface of an exposed antenna plate satisfies the normal

component boundary condition E,, = Q/(A_o), where Q is the induced charge, A is the plate

area, and Eo is the permittivity of flee space, a change in the thunderstorm field must be

accompanied by a change in induced charge. The integrating apparatus used to measure the

changes in induced charge normally consists of an electronic integrating circuit composed of an

electrometer and having in the feedback loop a resistor R and capacitor C in parallel. The

inverting input of the electrometer is attached to the plate and the noninverting input is grounded.

Typical RC decay times of the electrometer output are measured in seconds (slow antennas) and

from milliseconds to microseconds (fast antennas).

From the point of view of the experimenter, the RC decay time should be made larger than

any time variation of interest [1]. For instance, if one is interested in lightning return stroke

fields, the RC should be in milliseconds and if interested in total lightning field changes, the RC

should be in seconds. The decay assures that the sensor output is nullified before another event

occurs; triggering from the "zero line" is an advantage because one can devote the full vertical

amplitude resolution and dynamic range of the sensor to the event. The systems described by [2]

employed RC values of 4 s, 0.3 ms, and 70 /3s to look at various temporal regimes in the

lightning signature.

In the past 20 years, several new scientific and commercial applications of electro-optic

technologies have arisen for measuring electric voltages and fields ([3] - [10]), and some of these

investigations were specifically directed toward the study of thunderstorm electric fields.



Electro-optic crystals have offered a convenient and affordable means of controlling the

intensity or phase of optical radiation in an ever-expanding number of applications that include

high-speed digital communication, optical beam deflection, and spectral tunable filters [11].

Because the crystals respond quickly to applied voltages and no moving parts are required,

modulation frequencies of several gigahertz are possible. Liquid crystals have also been used in

high speed optical shutter applications, and [12] has used liquid crystals to measure lightning

electric field changes.

In the present study, we describe an electro-optic lightning field change detector that was

recently developed and deployed in the summer of 1998 at the NASA Marshall Space Flight

Center (MSFC) in Huntsville, Alabama. The sensor is an engineering model composed of both

fabricated and vendor-supplied components, and the optics were mounted on a small laboratory

optical breadboard. The RC decay was adjustable from 1 s to 1 ,us and was typically set to a few

tens of milliseconds during deployment in order to resolve individual strokes in a lightning flash.

The main sensing components are a flat aluminum plate and a long cylindrical, high impedance

electro-optic crystal of potassium dihydrogen phosphate (chemically written as KH2PO 4, or

"KDP" for brevity); some dielectric and optical properties of KDP are provided in [13]. The

details of the design, alignment, calibration, deployment, and data results are discussed below.

We begin our discussion with a review of the linear electro-optic effect since it is fundamental to

the design characteristics of the lightning detector.

2. The Linear Electro-Optic Effect

Friedrich Pockels (1865-1913) was the first to describe the linear electro-optic effect in two

early publications ([14], [15]). Figure 1 shows a typical Pockels cell arrangement for an electro-

optic modulator. The central component is an electro-optic crystal, KDP. Light from a diode



laser(inputbeam)passesthroughtwopolarizers,aquarterwaveretarder,andthecrystalbefore

exitingtheopticalsystem.Theoutputbeamwouldtypicallybemeasuredwitha photodetector

andtransimpedancecurrentamplifiersystem.

Equationsfor thetransmissionof light throughananisotropicmediumsuchasthe KDP

crystalmaybederivedfrom Maxwell'sequationsandenergyconservation.Conductivitycr is

negligible for the materials we are using at optic frequencies. The electric displacement D and

magnetic induction B are related through [ 16]

VxF=-3B/Ct, VxH=OD/Ot+J, V-D=p, V.B=0, (1)

where F and I-I are the electric and magnetic field intensities, respectively. [Note: we have

used "F" to denote the laser light electric field here rather than the customary notation "E" to

avoid confusion, i.e., "E" and its components denote the (enhanced) atmospheric field at the

sensor antenna plate as suggested in section 1 above and in the discussion that follows.] The

vector J is current density, p denotes charge density, and we have the relations I) = o_. F and

B = _IJ. The electric permittivity { is a tensor for anisotropic materials; it may be brought

into diagonal form by a suitable rotation of coordinates. We will approximate /_ by kt,,, the

magnetic permeability of a vacuum, for all materials in the optical circuit.

Energy conservation is described by

x.>=-,,i,v .[,,,
where fi is the outward normal to a surface S which bounds a volume v. We will assume that

p and J are both zero. The equation for energy conservation can be used to show that the

perrnittivity tensor is symmetric.

Suitable manipulations of ( 1) for isotropic media yield a wave equation

+k')r=0



The same equation is satisfied by H. Plane wave solutions f)e ikr-j°_ are admitted, where 1_ is a

polarization, k = kl_, k = 2_r/2, and 1_ is the direction of propagation. Angular frequency is

denoted by co, t is time, r is a position vector, and 2 is the wavelength. With such assumed plane

wave forms for F and H in anisotropic media, we have the relations H = (k x F)/(co/t) and

I) = - (k x H)/co from which we may obtain (see [17])

(k. F)k - k2F = -co2_t_. F. (4)

We let k = con/c, where n is the wave index of refraction and c is the speed of light, and refer to

a coordinate system in which _ is diagonal. The form in (4) is that of an eigenvalue equation. In

general, there will be two nontrivial solutions.

The following coordinate system will be used. The Z-coordinate will be along the path of

the collimated laser beam with the direction from the laser to the photodetector considered as

positive. The zenith direction vertical to the optics breadboard, on which the components are

mounted, will define Y, and X is chosen to complete a right-handed system. Furthermore, we

define a system (x, y, z) that is identical to the (X, Y, Z) system but is attached to the crystal; the

(x, y, z) system defines the crystal principal axes when no voltage is placed across the crystal. In

the present discussion of perfectly aligned optics, there will be no distinction between the two

coordinate systems. Later however, in our discussion of misaligned optics provided in section 4,

the (x, y, z) system, or "crystal system", will be oriented differently than the fixed (X, Y, Z)

"breadboard system".

The indices of refraction and their associated allowable polarizations may be obtained

geometrically. By considering surfaces of constant energy density, an index ellipsoid

2 2

x /n x +y2/ny2 +zY_? =1



maybeconstructed[11]; n x, n_,, and n: are the refractive indices along the coordinate axes.

The allowable polarizations and indices of refraction may be obtained by finding the axes of the

ellipse formed by the intersection of the index ellipsoid and a plane normal to the direction of

propagation.

The index ellipsoid of the crystal may be modified by applying an electric field to the

crystal. The general formula is given by [1 1]

(nx -2 +rlkek)x 2 +(ny -2 +r2kek)y 2 +(nz -2 +r3kek)z 2 (6)
+ 2rdkekyz + 2rskekxz + 2r6kekxy = 1,

where the summation convention has been employed. The ek are components of the applied

electric field, and the rik are the electro-optic coefficients of the crystal. It is intended that the

modulating field be along _; only r63 is needed since rj3 = 0, 1 _<j _<5 for KDP.

We assume that the crystal is aligned so that its axes of symmetry are parallel to the

coordinate axes. The KDP crystal is uniaxial which means that n x = n v = n o , where n o has a

numerical value of 1.507 and is called the ordinary index of refraction. The extraordinary index

of refraction is defined by n,, = n= = 1.467. Since n,, < n o the KDP is additionally specified as

being a negative uniaxial crystal.

When a field e_ is applied along the z-direction, the allowed polarizations are

(- i + _)/-q/2 and (i + _)/,_f2. Light polarized along )' upon entering the crystal is split into

these polarizations, the waves along which propagate at different speeds. For a crystal of length d

having a voltage V = e=d, the phase lag is

c[G _ n "_d = 2rc_) 3 -= (_0 ----_n ° r63V , (7)F



wheren.,. (slow) and n l (fast) are the indices of refraction along the allowed polarizations.

Waves traveling along the z-axis with no modulating voltage have a speed corresponding to the

ordinary index. Waves traveling in the xy plane with polarization in the z-direction have a speed

determined by the extraordinary index of the crystal. The crystal's utility lies in its ability to

introduce a variable phase retardation between the two waves in response to an applied voltage.

The linear relationship provided in (7) is the Pockels effect [ 18].

If the laser light field immediately following the first polarizer is F 0 coscot Y, then the field

of the output beam will be

F = F0[cos(cot - r) + cos cot]: /2. (8)

Here, the phase change due to the path length between optical components is suppressed.

Reflection losses at the interfaces are relatively small, and are customarily neglected. Exact

solutions that account for such losses are available ([19], [20]).

Using (8) to obtain the square magnitude F 2, the power is obtained by taking the time

average of F 2 [21]. Dividing by the input power, which is proportional to F02/2, yields the

optical transmission T given by

= sin 2 F/2 = sin2[(TcV)/(2V_)],T (9)

where V,_ = 2/(2n3r63)is called the half-wave voltage, i.e., V= V_ yields a retardation of rc

which is one half of 2_r, or "one half wave".

Note that the derivative, T'(V) - dT/dV, or electro-optic sensitivity, is zero when there is

no voltage across the crystal, i.e., T'(0)= 0. In order to have the largest possible change in

transmission with applied voltage for small voltages, it is convenient to start at a point where

T'(0) is as large as possible. This may be achieved by introducing an additional phase



retardationof re/2 by inserting a quarter wave plate before the second polarizer. In such a case,

the transmission of the system is given by

T=sin2[F/2+Tc/4]. (10)

This process is the optical analog of biasing an electronic component.

The preceding discussion has summarized the basics of the linear electro-optic effect in

anisotropic media. Some early experimental investigations of this effect are provided in [22].

Note from (9) and (10) that a high frequency modulation voltage can be applied to the crystal to

vary the optical transmission and hence the optical amplitude of the output beam. In this sense

the Pockels cell configuration can serve as a high speed optical shutter.

However, the Pockels cell can also be used in the reverse sense, that is, a high gain

measurement of small changes in the optical amplitude of the output beam can be used to infer

the changes in crystal voltage. This is the operational principle of the electro-optic lightning

detector developed in this work. The lightning places a transient voltage across the electro-optic

crystal thereby changing the optical transmission of laser light through the cell. Specific details

of the sensor follow.

3. Sensor Description

Figure 2 provides a simplistic overview of the electro-optic lightning detector developed at

NASA MSFC. The detector is placed outside on a flat surface sufficiently far from tall grass or

pointed objects that could produce local field-limiting corona discharges. Note that a

thunderstorm separates positive and negative charges and thereby generates strong electric fields

in the atmosphere and on the ground. When a cloud-to-ground flash occurs, as shown in Figure

2, tens of coulombs of negative charge from the lower regions of the thundercloud (i.e., -7 km

altitude) are deposited to Earth. The large charge transfer is accompanied by a substantial change



in theelectricfield AEgat theground,i.e.,a AEg > 5 kV/m is notuncommonfor discharges

thatarewithinarangeof afewkilometers.Thoselightningeventsthatdonottransferchargeto

groundbut transportchargewhollywithin theatmosphere,calledcloud flashes, also produce

substantial values of AEx. In general, the field change at the height of the antenna plate differs

from that at the ground, and the presence of the sensor itself enhances the local field change.

Figure 2 indicates the net field change at the antenna plate as AE, and this is the stimulus that

produces a change in crystal voltage given by AV = Ae:d.

When the sensor detects the lightning-caused field change AE, the photocurrent output

from the optical system is converted to an analog voltage using a Stanford Research Systems,

Inc. current preamplifier (model SR570), and the analog voltage is passed to a Pentium computer

where the signal is digitized at 125 Hz using a Data Translation A/D board (model DT2833).

A closer look at the sensor's optical system is provided in Figure 3(a); it is based on the

linear Pockels cell configuration discussed in section 2. The totality of optics are mounted on an

optical breadboard that is 30.48 cm by 60.96 cm in dimension. The intent was to build a

reasonably small engineering model that still provided "on-line" adjustability and

interchangeability of optical components. Future designs of the sensor would be scaled down

considerably (i.e., the laser and all optical elements could be precision mounted within a single

sealed tube only a few centimeters long and wide).

Working from left to right in Figure 3(a), the first element is a 30 mW semiconductor laser

diode that has a wavelength of 685 nm and an elliptic beam cross section (major and minor axes

of 4 mm and 1 mm, respectively). We have also used a 4 mW, 670 nm laser diode, but at the

expense of reduced sensor sensitivity. The beam height above the optical breadboard is 75 mm

and the beam divergence is negligible across the length of the breadboard. The only

considerations during operation are to allow the laser a few minutes of"on time" prior to taking
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datato assurepowerstability,preventreflectionsbackinto the laseraperture,andprevent

excessivetemperaturechangesin theair surroundingthelaser.

The next(optional)optic is a beamsplitterthat sendsa portionof the laserlight to a

photodetector(shownin thebackground).Thesetwocomponentsallowoneto monitorthe laser

stability,butbecauseourMellesGriot,Inc. lasershadminimal(< 1%)powerfluctuation,the

monitoringsystemwasnotastrictrequirement.

The next elementis a post-mounted,verticallyorientedMelles Griot dichroic sheet

polarizerfollowedby theKDPcrystal.Thepolarizerhasa clearaperatureof 26.5mm anda

thicknessof 2.5mm.ThehygroscopicandwatersolubleKDPcrystalis housedinadrynitrogen-

flushedair- tight Plexiglasscontainerthat is mountedon a two-axisholder;the holderhas

alignmentmicrometeradjustmentsin both yaw and pitch. A durablestrap fastensthe

crystal/containertotheholderandtheholderisboltedto theopticalbreadboard.Thecrystalhas

acylindricalgeometry(40mmlength,20mmdiameter)with ringelectrodeswrappedaroundthe

outercrystaldiameterat eachend.Thering electrodesallowfor a largercrystalaperturethan

commonlyusedwasher-typeelectrodesthatareplaceddirectlyonthecrystalentrance/exitfaces.

Additional details and considerationsof ring electrodesare provided in [23]. Direct

measurementsof crystalimpedanceandcapacitancegivethevaluesR = 194 Gf2 and C = 5.51

pF, respectively, or a crystal RC decay time of ~1 s. (In addition, we have also experimented

with a post-mounted 3 mm thick, 25.4 mm aperture crystal of potassium didueterium phosphate

(KD*P) similar to the crystal used in [24] and [25]. This crystal had transparent indium tin oxide

(ITO) electrodes, and, because of its thin width it had a shorter RC decay time constant than the

long cylindrical crystal of KDP.)

The next two optical elements include a quarter wave plate and a horizontal polarizer.

Except for its orientation, the polarizer is identical to that described above. The quarter wave

plate is composed of quartz and has a diameter of 20 mm. As discussed in section 2, the quarter

I1



waveplatechangesthetransmissionprofile T(V) from that given in (9) to that given in (10)

when the optics are perfectly aligned and reflections are negligible. In effect, the quarter wave

plate improves the electro-optic sensitivity T'(V) at a crystal voltage V = 0. This is important

since, before a lightning event, the voltage on the crystal is very nearly zero (very small and

random stray voltages undoubtably exist across the crystal at all times). A subsequent change in

crystal voltage AV due to the lightning produces a change in optical transmission given by

AT _ T'(0)AV for AV small. Hence, in order to get large (measurable) changes in transmission,

it is desirable to have T'(0) large. As will be detailed in section 4, we have found that small

misalignments in the optics produce sufficiently large values of T'(0) when the quarter wave

plate is not inserted.

The final component shown in Figure 3a is the photodetector. It has an active detector area

of 100 mm 2 and was connected directly to the input of the SR570 current preamplifier with a

short (30.5 cm) 50 f_ plenum coaxial cable. The amplifier (not shown) has a low end sensitivity

of 1 volt output per 1 pA current input (written as 1 pA/volt). It also has valuable input offset

adjust buttons that allowed us to accurately null the transmitted laser light (at V = 0) so we could

increase amplifier gain without over ranging. We typically collected lightning data at either the 1

/_A/volt or 50 nA/volt gain setting, depending on storm range. The amplifier also offered

considerable band pass filtering capabilities. Lightning data were collected using the 10 - 30 Hz

band-pass filter, primarily to avoid dc drift and 60-cycle noise sources. Application of the band-

pass filter contributed to shortening the overall, or "effective RC " decay time constant of the

sensor to a value of tens of milliseconds. The specific value of the effective RC decay depended

on the particular amplifier gain setting that was chosen (see section 5 below for additional

comments on sensor RC decay and specific examples).
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Figure3(b) showsthe protectivehousingthatthe opticalsystemis placedwithin. The

housingisconstructedof a50.8mmthickpolypropylenematerialthataffordsverygoodthermal

insulationfrom excessiveheatingdueto typicalsummerconditionsin Alabama.Ampleroom

insidetheboxallowedfor theinsertionof coolingpacksasanaddedmeasureto preventexcess

heatingto the laserandcrystal;detailsof KDPrefractiveindexchangeswith temperatureare

providedin [26].Methodsmoresophisticatedthanapplyingcoolingpacksarethe so-called

"quenchingconditions"discussedin [27] that removeunwantedbirefringencesin crystals

affectedby generalchangesinenvironmentalconditions.Fortunately,undergoodthunderstorm

conditionsthe weatherwascloudyand not excessivelyhot, particularlyduringperiodsof

precipitation.In thesesituations,we sawno discernabledifferencein sensoroutputwith or

withoutcoolingpacks.

Thepolypropylenematerialhadsufficientweightandshockabsorptionto minimizethe

effectsof vibrationsdueto wind/precipitation/thunderthatmightdisturbtheopticalalignment.

Greatcarewasspentassuringthattheboxwaswatertight;theboxtop lid overhangsthesides

andawatertightO-ringlinestheareawherethelid rests.Theoutsideof theboxwascoatedwith

a durablewater-repellentpaintandthe colorwaswhiteto reflectsunlight(againpreventing

excessiveheatinginsidethebox).Theinsideof theboxwascoatedwith a flat blackpaintto

minimizescatteringof laserlightthatmightbereflectedfromopticalelements.

Ontheoutsidetop portionof thebox lid is mounteda teflonrod thatsupportsa circular

aluminumantennaplate.A smallboreholewasdrilledthroughtheteflonrodsothata teflon-

coatedwire couldinconspicuouslyconnecttheantennaplateto the left ring electrodeof the

crystal.Theothercrystalring electrodewasgroundedto the opticalbreadboard,as wasthe

currentpreamplifier.Theopticalbreadboardandaluminumgroundplane(mountedontopof the

boxlid) werebothconnectedto astandard8 ft coppergroundrodthatwasdrivenintotheEarth

a fewinchesfromthehousing.A smallteflon"raincap"wasplacedovertheteflonsupportrod

13



beforeboltingtheantennaplatedown;thispreventsstreamsof waterfromshortingtheantenna

to groundpotential.

In summary,thelightning-causedAEexcitesthesensorantennaandraisesit to atransient

voltage,AV,measuredbetweentheantennaplate(theleft-sidecrystalelectrode)andground(the

right-sidecrystalelectrode);herewehaveneglectedthesmallcapacitancebetweentheantenna

plateandthe left crystal electrode. The voltage AV across the crystal changes the crystal's

refractive index and polarization characteristics, and hence the transmission of the optical system

changes by an amount AT. With laser power P,,, the change in transmitted power is simply

AP = ATP,, which is measured using a high gain photodetector/preamplifier system. Therefore,

one formally has the chain AE _ AV --_ AT _ AP so that values of AP can be directly related

to the values of AE through calibration (see section 5 below).

4. Alignment

The expressions for the optical transmission, T, given in (9) and (10) assume that the optical

elements are perfectly aligned. Since in this study the Pockels cell is used as a detector to sense

the slightest antenna voltages, we have found that even small misalignments of the crystal and/or

quarter wave are important effects.

The theory of transmission through birefringent media is well developed and the

transmission through a crystal at an oblique angle can be derived by exact or approximate means

([19], [20], [28], [29]). When a collimated beam of light enters a birefringent medium at an

oblique angle, the transmitted field consists of two beams that propagate in two distinct

directions. The direction of a refracted beam depends on its angle of incidence and the refractive

index, and the refractive index in turn depends on the angle of incidence. An exact solution to

this problem is complicated, but a great simplification can be made by noting that there is very
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little divergencein the transmitted beams, particularly for small angles of incidence. We will

assume that the transmitted field consists essentially of a single beam whose direction is

determined by the ordinary index of refraction.

As defined in section 2, the crystal axes (x, y, z) are parallel to the breadboard axes (X, Y, Z)

when the optics are perfectly aligned. Suppose that the crystal is misaligned by an angle -O

about an axis 1] = -sin _bX + cos _bY, where _bis measured from the positive X-axis. Inside the

crystal, both refracted rays are assumed to make an angle 0 with the crystal's extraordinary axis,

where sin® = no sinO. A formula for retardation may be obtained by examining the index

for the index

ellipsoid.

The equation

summarized as

ellipsoid and expressions for related variables can be

f2 /
n ,, _ 0

rT .l_l.r = 1, r = xi+ y_ +z_, 1_ = ( _0 /70 -2 02,_=ezr63. (11)0 n e- ;

Ideally, light should pass along _; however, in the misaligned case the optical path is

along sinO(cos_b_ + sin_b_,) + cos0$. Such a direction may be obtained by rotating $ about (1

through an angle O. This may be done with a rotation matrix whose components are obtained

from the dyadic

1VI= [I-(1- cos0)(l - hh) + sin Ola x I], (12)

where I is the identity dyadic. In a rotated system, the equation of the index ellipsoid and

related variables are given by

r'r.l_l'-r':l, l_I.r':r, i_l':l_lr.i_l.lVI, (13)

and the optical path becomes _'.
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by:

Polarizationsandindicesof refractionmaybeobtainedfromthecomponentsof I7,/'2given

Y

ct=(A 2+A2_ -2 _2 n-22)n,, +--3 e +2AtA2_

fl= A2(A 1 + A,)n,, -2 + A3Asne -2 +(A1A , + A_),_ (14)

y= A_ + A 4 n o +..s _ + 2A2AaE ;

A I = cosOeos 2 _b+sin 2 _b, A 2 = (cosO-1)cos_bsin_b, A 3 = sinOcos_b,

A 4 = cosOsin 2 _b+ cos 2 _b, A 5 = sinOsin_b,

where the intersection to the plane normal to the beam direction and the index ellipsoid is the

ellipse r_ r "/q'z .r_ = 1 and r_ = x'i' +y'_,'. The refractive indices and allowed polarizations

may be obtained from the eigenvalues and eigenvectors of this matrix. Performing these

calculations yields the two eigenvalues

2± = ½ {2n,, -2 + sin z 07/ -sin 20sinZ_b_

+[sin' 07/ + 2(1 + cos 20)sin 20sin2_,bT/E

+ (sin4 Osin2 2_b + 4c0s2 0)_2 ]_ } (15)

._ n,, -2 +82(7/ -sin2_b_)/2 + [0'7/ 2/4 + 82 sinZ_bT/e "a¢-e2]_

for small 0, where 7/ = n¢ -2 - n,-2 . The retardation is F = 2_r d sec 0 A/d., where

A = n.,-nj =l/.f2-_-l/._f-Z+_n,,340'7/2/4+O 2 sin2_bE+ E 2 (16)

Eigenvectors are given by

¢,'_ = cos6i' - sinb'_', v+̂' = sindi' +cos6_,', (17)

where tan2b'= 2fl/(T-a ). The + and - signs indicate the fast and slow axes, respectively.

Consistent with the approximations used, the field exiting the second polarizer has the form

16



9_ = cosdX-sind_', V÷ = sinSX+cosdY.

(18)

Obtaining the transmission as for (9), we have

T = sin 2 26sin 2 F/2, (19)

where sin 26 = 2fl/X/(a - y)2 + 4fl2. If a quarter wave plate is used, similar reasoning leads to

the formula

T = ½[1 + sin26 sinU]. (20)

The choice of sign for the square root corresponds to the quarter wave plate installed in such a

way as to increase transmission for increasing voltage (e z being taken to be positive in the

positive direction of the Z-axis).

In order to provide for a most general misalignment of the crystal, we allow for a rotation of

the crystal about Z by an angle r. Results may be obtained by rotating the orientations of the

polarizers and quarter wave plate by -v. Transmissions in this case are given by (19) and (20)

with 6 replaced with 6 + r.

Using the expressions in (19) and (20), we have computed the theoretical transmission of an

aligned and misaligned optical system with or without a quarter wave plate. The results are

provided in Figure 4. We have estimated the small misalignments expected under normal

laboratory conditions, i.e., 0 = 1.4° so that (9 = sin-_(1.5074sinl.4) = 2.11 ° about an axis la

oriented with angle _b= 89.75 ° .

Note that when there is no quarter wave plate and the optics are aligned (19) reduces to (9)

and a simple sine squared dependence results (solid line, Figure 4(a)). When the optics are

misaligned, the net transmission increases slightly, but more importantly, the sensitivity T'(V)

increases substantially at and near V = 0 (dashed line, Figure 4(a)). When the quarter wave is
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inserted, the transmission increases for both aligned (dotted line, Figure 4(b)) and misaligned

(dot-dashed line, Figure 4(b)), but the misalignment no longer improves sensor sensitivity at and

near V = 0, or at any larger values of V.

To further clarify the variation of sensor sensitivity for small changes in crystal voltage, we

have numerically computed the change in transmission AT = T(V)-T(O) for a small crystal

voltage change AV = V - 0 = V all as a function of V. The functional dependence AT = f(V)

is provided in Figure 5 for aligned and misaligned optics with or without a quarter wave plate.

We see that the addition of the quarter wave plate necessarily improves sensor sensitivity no

matter if the system is aligned or misaligned. However, because the quarter wave plate produces

additional reflective losses to the optical system, because its inclusion produces additional noise

sources during high-gain operation of the lightning detector, and because the slope of the lines in

Figure 5(b) have magnitudes that are not vastly different, we did not include the use of the

quarter wave plate during normal calibration and operation of the lightning sensor.

5. Calibration

The calibration of the lightning detector was straightforward. On the top lid of the optical

housing shown in Figure 3a, four threaded holes were drilled (one at each corner of the square

lid). A nylon rod was screwed into each hole in order to support a large circular aluminum

calibration plate. An Avtech high voltage wave function generator (HVWFG) was connected

between the calibration plate and the lid-mounted ground plane. This provided a uniform vertical

electric field change for the lightning detector antenna plate located between the calibration plate

and ground plane. We also used a standard (i.e., lower voltage) BK-Precision WFG to check

low-end sensor detectability.
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The risetimeof a lightningreturnstrokefield changeis typically60 ys. The Avtech

HVWFGcouldsupplysquarewaveshavingamplitudesof +500 volts with frequencies ranging

from near dc to 3 kHz and with a peak-to-peak risetime < 35/_s. The BK Precision WFG could

supply square waves having amplitudes of +12 volts with frequencies ranging from near dc to

several megahertz, and a risetime of about 2 ms when operated at 0.5 Hz. In order to get an

accurate calibration, it is important to have waveforms that rise to peak in milliseconds or less

because of the characteristic RC decay of the crystal. In effect, the vertical displacement current

density _',, dE/dr produced by the calibration apparatus or a lightning event must be large

enough to place a significant amount of charge onto the left crystal electrode before leakage

currents in the crystal drain the crystal voltage to ground. The electric field line distribution

inside an electro-optic parallelepiped crystal is provided in [30] and evidence for field-driven

leakage currents in electro-optic materials is given in [3] and [24].

Because we have picked a crystal that has an RC decay of ~1 s, the leakage current to

ground is slow. This allows the crystal to acquire a larger voltage, and hold a voltage for a longer

period of time. Furthermore, since electro-optic crystals can be modulated into the gigahertz

region, they respond quickly to changes in voltage. Hence, the crystal responds quickly to

lightning transients, acquires a sufficient voltage, and holds the voltage for a time that is long in

comparison to the (tens of milliseconds) decay time of the photodetector/amplifier system. The

amplifier effectively samples the crystal voltage substantially faster than the crystal voltage has a

chance to decay, thereby optimizing overall sensor sensitivity.

If it were not for our desire to remove 60-cycle noise sources, we could replace the applied

band-pass filter with a high-pass filter (> 10 Hz) to improve overall sensor bandwidth. A narrow

filter for removing 60-cycle noise in conjunction with the high-pass filter would clearly be

optimum, but is not possible with the SR570 electronics alone.
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Figure6 showssomespecificexamplesof sensoroutputin responseto bothhighandlow

voltageWFG-simulatedlightningelectricfieldchanges;theamplifiergainwassetto 1/iA/volt

and the 10 - 30 Hz band-pass filter was used. The train of sensor output pulses provided in

Figure 6(a) are due to a +2083 V/m square wave calibration input; this field change magnitude is

typical of lightning that is a few kilometers away from the observer. Note that the output

waveforms decay back to zero with an e-folding time (effective RC decay) of-14 ms. The

amplifier then "overshoots" until it recedes back completely to zero about 154 ms later. At a gain

of 50 nA/volt, there was no overshooting and the e-folding time was -27 ms.

Figure 6(b) shows the output for a square wave input of only +30.6 V/m. The low-end

sensitivity and signal-to-noise shown in Figure 6(b) can be further improved by further

optimizing the misalignment of the optical system. Additional details related to the general

accuracy and limits of precision of electro-optic voltage sensors is provided in the U.S. National

Bureau of Standards (NBS) report given in [31].

We performed these type of calibration tests for a variety of simulated lightning AE values

and amplifier gains when the sensor was deployed outside of building 4614 at the NASA MSFC.

Figure 7 shows a sample linear response calibration plot acquired over a large range of AE values

when the gain was set to I/_A/volt. Because the KDP crystal half wave voltage V,_ is about 9000

volts, the lightning detector's full dynamic range well exceeds that shown in Figure 7. In

addition, because of the misalignment of optical elements, the value of 6 in (19) differs from

nt4 so that we are able to discriminate between positive and negative lightning AEs, i.e., the

linear calibration curve extends to negative values of AE.

6. Storm Data
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Thesummerof 1998in northernAlabamawasmarkedby substantiallydryperiodsthatled

to eventualfire outbreaksin September.Nonetheless,we wereableto deploythe lightning

detectoronfive separateoccasionsfor stormsthatoccurredonJune30,and July3,20,21,and

24. The stormoccurringon July 20 resultedin a lightningdeathto a citizenof northern

Huntsville,Alabamathat occuredabout45 minutesprior to the startof ourdatacollection

period.

TheNationalLightningDetectionNetwork(NLDN)operatedbyGlobalAtmosphericsInc.

(GAI) locatedin Tucson, Arizona detected widespread cloud-to-ground activity on June 30 over

much of northern Mississippi, Alabama, and Georgia, and over most of Tennessee. Several

cloud-to-ground lightning events that occurred within a few kilometers of our deployment site

were identified by eye and were time-correlated with transient sensor outputs that we displayed

in real time on the Pentium computer. We used Microcal Origin 4.0 data acquisition software in

"scope" mode to look at the digitized sensor output. We also viewed the direct analog output of

the sensor on a conventional 40 MHz oscilliscope. Our sensor detects both ground and cloud

discharges, but for these daytime thunderstorms it was more practical to time-correlate events

with ground discharges, i.e., it was easier to see the well-defined channel of a ground stroke

rather than the faint diffuse emission from cloud-obscured discharges.

Figure 8(a) shows the output from the electro-optic lightning detector for an active 2-min

period during the June 30 storm (the plot abscissa is in seconds after 4:48:30.5 PM CST, i.e., the

time the sensor was turned on). These data were collected using a gain of 50 nA/volt, or a factor

of 20 higher than that shown in the calibration curve in Figure 7. By looking southward from our

deployment site during this storm, we were able to visually confirmed over 10 lightning events

that gave coincident field excursions in our recorded sensor output. Two small amplitude

lightning flashes are indicated with pointers in Figure 8(a), and a more time-resolved plot of each
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flashis providedin Figure 8(b) and 8(c). These particular flashes were confirmed by eye as

cloud-to-ground events. Several rapid variations are evident in each flash that we believe are

individual strokes. The duration between the peaks of these excursions is less than -100 ms

which is characteristic of the interstroke time interval shown in Figure 3 of [2]. There may even

be evidence of a small amplitude "K" change just after 3160.4 s in Figure 8(c). There are some

positive excursions starting at ~3122.7 s in Figure 8(b) that might be associated with stepped

leader activity or other local atmospheric electrical effects. We believe that the negative

excursion before the series of positive strokes is associated with an upward in-cloud moment

change; a similar negative excursion also occurs in the flash shown in Figure 8(c).

As we have stated, vibrations due to wind, precipitation, and thunder can produce noise in

the sensor output and these affects are evident for small amplitude discharges. Figure 9 shows

some time-resolved, single pulse, large amplitude events that occurred earlier during the June 30

storm. There are several low amplitude reverse-polarity field changes associated with distant

lightning events, and two larger amplitude events that are probably much closer to the sensor. It

is possible that the reverse-polarity events are associated with cloud discharges that occur

beyond the "reversal distance", i.e., the surface field verses range from a tripolar thundercloud

charge distribution reverses sign at the "reversal distance", or about 10 km [1].

The saturation output voltage of the SR570 amplifier is +5 volts which was occasionally

exceeded by some lightning events. In some cases, we were forced to decrease sensor gain to

avoid frequent pulse saturation in the data stream. An RS232 cable connection between the

amplifier and our indoor computer allowed us to remotely adjust sensor gain as the storm cells

moved or developed relative to the deployment site.
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7.Summary

In the future,we would like to furtherexperimentwith andoptimizethe electro-optic

lightningsensorand deploy it againto collect morestormdata.As we havestated,the

dimensionsof oursensorcouldbescaleddownsignificantly.The laser and all optical elements

could be precision-mounted within a single sealed tube only a few inches long and wide.

Alternately, a small crystal attached to polarization maintaining (PM) fibers and an antenna

could be the sole components deployed into the thunderstorm environment; the photodetector,

current amplifier, laser, and remaining optics could all reside inside a building along side the

data acquisition computer. Or, crossed polarizers could be mounted to the crystal and regular

fiber optic cables used. In any case, a single unit reduced size system would be less susceptible

to vibration-induced noise sources.

Size reduction, as well as improvements in low end sensitivity and signal-to-noise are

fundamental to improving the attractiveness of electro-optic applications in the discipline of

lightning research. It is possible to arrange optics in such a way as to pass the laser light multiple

times through the crystal to increase the total birefringence and thereby substantially improve

sensor gain. We are also interested in inspecting other crystal types that offer certain advantages

such as bismuth germanate (Bi4Ge3012) described in [32] and Hexamine ((CH2)6N4) described

in [33].

Ultimately, the electro-optic technology needs to be placed beside a conventional electric

field mill such as the type operated by the NASA Kennedy Space Center (KSC) and the U.S. Air

Force Eastern Range (ER) located in east central Florida. This would allow one to further inspect

the sensitivity, accuracy, signal, and noise characteristics of the electro-optic sensor under a

variety of environmental conditions and lightning source stimuli.
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In the future, lightning field changes derived from a ground-based network of electro-optic

sensors that cover a region of a few hundred square kilometers could be used to retrieve the

charges deposited by a lightning. This has already been achieved using the KSC-ER field mill

network, but with the added difficulty and errors associated with detecting and computing values

of AE from the continuous E-data ([33] - [37]).
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Figure Captions

Figure 1. Typical electro-optic Pockel cell light amplitude modulator [adapted from Yariv and

Yeh, 1984].

Figure 2. Overview of the electro-optic lightning detector system; AE denotes a thunderstorm

electric field change produced by a cloud-to-ground lightning event shown to the left.

Figure 3. The basic components of the electro-optic lighting detector: (a) optics, and (b) the

optical housing and antenna.

Figure 4. Comparison of the transmission T for aligned and misaligned optics (a) without a

quarter wave plate and (b) with a quarter wave plate.

Figure 5. The change in transmission AT for a voltage change AV = V- 0 = V across the crystal

all as a function of V, with and without a quarter wave plate for (a) aligned optics and (b)

misaligned optics.

Figure 6. Some calibration results for (a) a typical lightning field change of 2083 V/m and (b) a

very small 30.6 V/m field change that would be produced by a distant lightning source. The

band-pass filter of the amplifier is 10 - 30 Hz and the amplifier gain is 1/zA/volt.
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Figure 7. Sample calibration curve across a wide dynamic range of AE values. A linear

regression fit to the data points shown is ALE = -21.130 + 371.495AF; the linear regression

constant is r = 0.99902. The band-pass filter of the amplifier is 10 - 30 Hz and the amplifier gain

is 1/tA/volt.

Figure 8. Example of lightning data results for a storm that occurred on June 30, 1998: (a) for a

2-min period, (b) for a cloud-to-ground lightning flash within the 2-min period, and (c) another

cloud-to-ground flash in the 2 minute period. The band-pass filter of the amplifier is 10 - 30 Hz

and the amplifier gain is 50 hA/volt, or a factor of 20 higher than that used in the calibration plot

of Figure 7.

Figure 9. Additional examples of larger amplitude time-resolved lightning field changes

collected from the June 30, 1998 storm. Several small field excursions exist due to distant

lightning. The band-pass filter of the amplifier is l0 - 30 Hz and the amplifier gain is 50 hA/volt,

or a factor of 20 higher than that used in the calibration plot of Figure 7.
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